Try It

Graphs of Other Trig Functions Practice

Practice 1: Tangent/Cotangent

Drag each description to its appropriate place on the Venn diagram.

Definitions:

  1. asymptotes found by bx−c = 0 and bx−c = negative pi
  2. A. y = a × cot(bx − c)

    B. y = a × tan(bx − c)

    C. Both y = a × cot(bx − c) AND y = a × cot(bx − c)

  3. within a cycle, decreases left to right
  4. A. y = a × cot(bx − c)

    B. y = a × tan(bx − c)

    C. Both y = a × cot(bx − c) AND y = a × cot(bx − c)

  5. range: (−∞, ∞)
  6. A. y = a × cot(bx − c)

    B. y = a × tan(bx − c)

    C. Both y = a × cot(bx − c) AND y = a × cot(bx − c)

  7. amplitude not defined
  8. A. y = a × cot(bx − c)

    B. y = a × tan(bx − c)

    C. Both y = a × cot(bx − c) AND y = a × cot(bx − c)

  9. odd
  10. A. y = a × cot(bx − c)

    B. y = a × tan(bx − c)

    C. Both y = a × cot(bx − c) AND y = a × cot(bx − c)

  11. asymptotes found by b x minus c equals pi over 2 and b x minus c equals negative pi over 2
  12. A. y = a × cot(bx − c)

    B. y = a × tan(bx − c)

    C. Both y = a × cot(bx − c) AND y = a × cot(bx − c)

  13. within a cycle, increases left to right
  14. A. y = a × cot(bx − c)

    B. y = a × tan(bx − c)

    C. Both y = a × cot(bx − c) AND y = a × cot(bx − c)

  15. phase shift and starting point is bx−c
  16. A. y = a × cot(bx − c)

    B. y = a × tan(bx − c)

    C. Both y = a × cot(bx − c) AND y = a × cot(bx − c)

  17. symmetric to origin
  18. A. y = a × cot(bx − c)

    B. y = a × tan(bx − c)

    C. Both y = a × cot(bx − c) AND y = a × cot(bx − c)

  19. period = pi over b
  20. A. y = a × cot(bx − c)

    B. y = a × tan(bx − c)

    C. Both y = a × cot(bx − c) AND y = a × cot(bx − c)

Answers:

  1. A. y = a × cot(bx − c)
  2. C. Both y = a × cot(bx − c) AND y = a × cot(bx − c)
  3. C. Both y = a × cot(bx − c) AND y = a × cot(bx − c)
  4. C. Both y = a × cot(bx − c) AND y = a × cot(bx − c)
  5. C. Both y = a × cot(bx − c) AND y = a × cot(bx − c)
  6. B. y = a × tan(bx − c)
  7. B. y = a × tan(bx − c)
  8. C. Both y = a × cot(bx − c) AND y = a × cot(bx − c)
  9. C. Both y = a × cot(bx − c) AND y = a × cot(bx − c)
  10. C. Both y = a × cot(bx − c) AND y = a × cot(bx − c)

Practice 2: Secant/Cosecant

Drag each description to its appropriate place on the Venn diagram.

Definitions:

  1. asymptotes found by bx − c = 0 and bx−c = negative pi
  2. A. y = a × csc(bx − c)

    B. y = a × sec(bx − c)

    C. Both y = a × csc(bx − c) AND y = a × sec(bx − c)

  3. no x−intercepts
  4. A. y = a × csc(bx − c)

    B. y = a × sec(bx − c)

    C. Both y = a × csc(bx − c) AND y = a × sec(bx − c)

  5. symmetric to origin
  6. A. y = a × csc(bx − c)

    B. y = a × sec(bx − c)

    C. Both y = a × csc(bx − c) AND y = a × sec(bx − c)

  7. Period colon 2 pi over b
  8. A. y = a × csc(bx − c)

    B. y = a × sec(bx − c)

    C. Both y = a × csc(bx − c) AND y = a × sec(bx − c)

  9. b x minus c equals Asymptotes found by negative pi over 2 and b x minus c equals pi over 2
  10. A. y = a × csc(bx − c)

    B. y = a × sec(bx − c)

    C. Both y = a × csc(bx − c) AND y = a × sec(bx − c)

  11. odd
  12. A. y = a × csc(bx − c)

    B. y = a × sec(bx − c)

    C. Both y = a × csc(bx − c) AND y = a × sec(bx − c)

  13. range: (−∞, −1), (1, ∞)
  14. A. y = a × csc(bx − c)

    B. y = a × sec(bx − c)

    C. Both y = a × csc(bx − c) AND y = a × sec(bx − c)

  15. even
  16. A. y = a × csc(bx − c)

    B. y = a × sec(bx − c)

    C. Both y = a × csc(bx − c) AND y = a × sec(bx − c)

  17. phase shift and starting point is bx−c
  18. A. y = a × csc(bx − c)

    B. y = a × sec(bx − c)

    C. Both y = a × csc(bx − c) AND y = a × sec(bx − c)

  19. amplitude not defined
  20. A. y = a × csc(bx − c)

    B. y = a × sec(bx − c)

    C. Both y = a × csc(bx − c) AND y = a × sec(bx − c)

  21. symmetric to y−axis
  22. A. y = a × csc(bx − c)

    B. y = a × sec(bx − c)

    C. Both y = a × csc(bx − c) AND y = a × sec(bx − c)

Answers:

  1. A. y = a × csc(bx − c)
  2. C. Both y = a × csc(bx − c) AND y = a × sec(bx − c)
  3. A. y = a × csc(bx − c)
  4. C. Both y = a × csc(bx − c) AND y = a × sec(bx − c)
  5. B. y = a × sec(bx − c)
  6. A. y = a × csc(bx − c)
  7. C. Both y = a × csc(bx − c) AND y = a × sec(bx − c)
  8. B. y = a × sec(bx − c)
  9. C. Both y = a × csc(bx − c) AND y = a × sec(bx − c)
  10. C. Both y = a × csc(bx − c) AND y = a × sec(bx − c)
  11. B. y = a × sec(bx − c)

Practice 3: Sketching a Graph

Find the following for y = tan(2x − pi), then sketch the graph.

Phase shift: bx − c = 0

  • _____ (Fill in the blank) xpi = 0

  • Answer: 2 xpi = 0

  • 2x = pi
  • x equals pi over blank
  • Answer: x equals pi over 2
  • Period: period = pi over b
  • period = x equals pi over blank

  • Answer: x equals pi over 2
  • Two consecutive vertical asymptotes:
  • bx − c = −pi over 2
  • bx − c = pi over 2
  • _____ (Fill in the blank)xpi = −pi over 2
  • _____ (Fill in the blank)xpi = pi over 2
  • Answer:
  • 2xpi = −pi over 2
  • 2xpi = pi over 2
  • _____ (Fill in the blank)x = −pi over 2 + pi
  • _____ (Fill in the blank)x = pi over 2 + pi
  • Answer:
  • 2x = −pi over 2 + pi
  • 2x = pi over 2 + pi
  • x = x equals pi over blank
  • x = the fraction blank pi over blank

  • Answer:
  • x = pi over 4

  • x equals the fraction with numerator 3 pi and denominator 4

  • 2 lines Line 1: x equals negative pi over 4 plus pi over 2 two halves equals negative pi over 4 plus 2 pi over 4 equals pi over 4 Line 2: x equals pi over 4 plus pi over 2 two halves equals pi over 4 plus 2 pi over 4 equals 3 pi over 4
  • Draw the graph on the next slide.


Practice 3: Sketching a Graph

On your own paper, using the information below, sketch the graph of

  • y = tan(2xpi)
  • phase shift: x = pi over 2
  • period = pi over 2
  • vertical asymptotes: x equals pi over 4 and x equals 3 pi over 4
  • Draw the vertical asymptotes
  • Find the x−intercepts, the midpoints between the asymptotes
  • Sketch the cycles
  • Click Reveal to check your graph
  • Answer:
  • You can also check your graph on the calculator.
  • Click Mode, then Radian.
  • Now click Y= and enter Y1= tan(2xpi) . Then select Zoom 7: ZTrig .