Convert Base 10 (Decimal) to Base 2 (Binary)

Converting a base 10 (decimal) number to a base 2 (binary) number is easy with the **successive division method** *algorithm*. Study the following examples. The numbers are color coded to help you keep track of what is happening.

Example 1: Use successive division to convert the decimal number 56 to a binary number.

Explanation	Show You Work
Start with the highest binary place value (power of 2) that is <i>less than or equal</i> to the number you want to convert (56). In this case it is 2^5 , or 32. Since you can divide 56 by 32, you record a 1 and you have a remainder of 24.	56/32 = 1 remainder 24
The next highest binary place value is 2^4 , or 16. The remainder 24 can be divided by 16, so you record a 1 and you still have a remainder of 8.	24/16 = 1 remainder 8
The next highest binary place value is 2^3 , or 8. The remainder 8 can be divided by 8, so you record a 1 and you have a remainder of 0.	8/8 = 1 remainder 0
The next highest place value is 2^2 , or 4. The remainder 0 cannot be divided by 4, so you record a 0 and you have a remainder of 0.	0/4 = 0 remainder 0
The next highest place value is 2^1 , or 2 . The remainder 0 cannot be divided by 2 , so you record a 0 and you still have a remainder of 0 .	0/2 = 0 remainder 0
The last place value is 2^0 , or 1 . The remainder 0 cannot be divided by 1 , so you record a 0 .	0/1 = 0

This *algorithm* shows that the decimal number 56 is equivalent to the binary number 111000.

Example 2: Use successive division to convert the decimal number 701 to a binary number.

Explanation	Show You Work
Start with the highest binary place value (power of 2) that is <i>less than or equal</i> to the number you want to convert 701). In this case it is 2^9 , or 512. Since you can divide 701 by 512, you record a 1 and you have a remainder of 189.	701/512 = 1 remainder 189
The next highest binary place value is 2^8 , or 256 . The remainder 189 cannot be divided by 256 , so you record a 0 and you still have a remainder of 189 .	189/256 = 0 remainder 189
The next highest binary place value is 2^7 , or 128 . The remainder 189 can be divided by 128 , so you record a 1 and you have a remainder of 61 .	189/128 = 1 remainder 61
The next highest binary place value is 2^6 , or 64 . The remainder 61 cannot be divided by 64 , so you record a 0 and you still have a remainder of 61 .	61/64 = 0 remainder 61
The next highest binary place value is 2^5 , or 32 . The remainder 61 can be divided by 32 , so you record a 0 and you still have a remainder of 29 .	61/32 = 1 remainder 29
The next highest binary place value is 2^4 , or 16 . The remainder 29 can be divided by 16 , so you record a 1 and you still have a remainder of 13 .	29/16 = 1 remainder 13
The next highest binary place value is 2^3 , or 8 . The remainder 13 can be divided by 8 , so you record a 1 and you have a remainder of 5 .	13/8 = 1 remainder 5
The next highest place value is 2^2 , or 4. The remainder 5 can be divided by 4, so you record a 1 and you have a remainder of 1.	5/4 = 1 remainder 1
The next highest place value is 2^1 , or 2 . The remainder 1 cannot be divided by 2 , so you record a 0 and you still have a remainder of 1 .	1/2 = 0 remainder 1
The last place value is 2^0 , or 1 . The remainder 1 can be divided by 1 , so you record a 1 .	1/1 = 1

This *algorithm* shows that the decimal number **701** is equivalent to the binary number **1010111101**.

Test Yourself

Test yourself with some practice problems. Check your answers with the key provided.

1. Convert 28 in b	ase 10 to base 2.
28/16 = remain /8 = remain /4 = remain _/2 = remain	nder nder
/1 = remain	
Answer:	

2. Convert 63 in base 10 to base 2.
$63/32 = \underline{\qquad} remainder$ $\underline{/16} = \underline{\qquad} remainder$ $\underline{/8} = \underline{\qquad} remainder$ $\underline{/4} = \underline{\qquad} remainder$ $\underline{/2} = \underline{\qquad} remainder$ $\underline{/1} = \underline{\qquad} remainder$
Answer:

3. Convert 100 in base 10 to base 2.	
A	
Answer:	
5 Comment 212 in here 10 to here 2	1
5. Convert 212 in base 10 to base 2.	
Answer:	
Answer:	

Answers:

1. 11100 4. 10000010 2. 111111 5. 11010100 4. Convert 130 in base 10 to base 2.

 Answer:

 6. Convert 247 in base 10 to base 2.

 Answer:

3. 1100100
 6. 11110111